
 

Accepted Manuscript

nn nRetrieval of microphysical characteristics of particles in
atmospheres of distant comets from ground-based polarimetry

Janna M. Dlugach , Oleksandra V. Ivanova ,
Michael I. Mishchenko , Viktor L. Afanasiev

PII: S0022-4073(17)30711-2
DOI: 10.1016/j.jqsrt.2017.10.002
Reference: JQSRT 5862

To appear in: Journal of Quantitative Spectroscopy & Radiative Transfer

Received date: 15 September 2017
Revised date: 3 October 2017
Accepted date: 3 October 2017

Please cite this article as: Janna M. Dlugach , Oleksandra V. Ivanova , Michael I. Mishchenko ,
Viktor L. Afanasiev , nn nRetrieval of microphysical characteristics of particles in atmospheres of dis-
tant comets from ground-based polarimetry, Journal of Quantitative Spectroscopy & Radiative Transfer
(2017), doi: 10.1016/j.jqsrt.2017.10.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://ntrs.nasa.gov/search.jsp?R=20180007109 2020-05-09T17:01:42+00:00Z

https://doi.org/10.1016/j.jqsrt.2017.10.002
https://doi.org/10.1016/j.jqsrt.2017.10.002


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

1 

 

Highlights 

 The results of observations of the degree of linear polarization for distant comets 
C/2010 S1, C/2010 R1, C/2011 KP36, C/2012 J1, C/2013 V4, and C/2014 A4 are 
presented. 

 Numerical modeling of light scattering characteristics for different particle 
morphologies is performed by using the T-matrix and superposition T-matrix 
methods. 

 A comparison between the observational data and the results of computations is 
carried out. 

 The models of possible composition of particles in the atmospheres of distant 
comets are suggested. 
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Abstract 

We summarize unique aperture data on the degree of linear polarization observed for distant 

comets C/2010 S1, C/2010 R1, C/2011 KP36, C/2012 J1, C/2013 V4, and C/2014 A4 with 

heliocentric distances exceeding 3 AU. Observations have been carried out at the 6-m telescope of 

the Special Astrophysical Observatory of the Russian Academy of Sciences (Nizhnij Arkhyz, 

Russia) during the period from 2011 to 2016. The measured negative polarization proves to be 

significantly larger in absolute value than what is typically observed for comets close to the Sun. 

We compare the new observational data with the results of numerical modeling performed with the 

T-matrix and superposition T-matrix methods. In our computer simulations, we assume the 

cometary coma to be an optically thin cloud containing particles in the form of spheroids, fractal 

aggregates composed of spherical monomers, and mixtures of spheroids and aggregate particles. 

We obtain a good semi-quantitative agreement between all polarimetric data for the observed 

distant comets and the results of numerical modeling for the following models of the cometary dust: 

(i) a mixture of submicrometer water-ice oblate spheroids with aggregates composed of 

submicrometer silicate monomers; and (ii) a mixture of submicrometer water-ice oblate spheroids 

and aggregates consisting of both silicate and organic monomers. The michrophysical parameters  

of these models are presented and discussed. 
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1. Introduction 

Physical properties of cometary atmospheres are known primarily on the basis of 

observational data obtained for bright comets close to the Earth and the Sun (mostly at 1–2 AU). It 

was believed early that the nature of the particles forming cometary comas does not depend on the 

heliocentric distance [1]. However, more recent observations show the existence of differences 

between the activity of close-to-the-Sun comets and those located at large heliocentric distances 

(see, e.g., Refs. [2–5]). Therefore, it is reasonable to expect that the nature of particles in these two 

types of comets may be different as well. Since polarimetric observations of comets often allow one 

to obtain useful information about the properties of particles in their comas, such measurements 

have been carried out intensively for comets close to the Sun (see Refs. [6,7] and references 

therein). However, no ground-based polarimetric observations had been performed until quite 

recently for distant comets (i.e., those at heliocentric distances exceeding 3 AU). The first results of 

such observations have been published in Refs. [8,9]. In particular, they show a deeper branch of 

negative polarization at small phase angles in comparison with that observed for comets close to the 

Sun. Despite the limited statistics of these observations, one can assume that the particulate 

compositions of the atmospheres of these two types of comets can also be different. 

The investigation of optical properties of cometary particles based on the results of 

polarimetric observations carried out for bright comets has been a hot topic over the past 15 years 

(see, e.g., Refs. [10–19]). Nevertheless, even though observational data have been obtained over 

wide ranges of phase angles and wavelengths, there is still no definitive conclusion as to the nature, 

morphology, and size of the particles in the atmospheres of these comets. Typically, analyses of 

polarimetric observations are largely focused on the reproduction of the negative branch of linear 

polarization at small phase angles. As the initial step, a model of the particle morphology is 

selected, for example aggregates [10–14], agglomerated debris [16,17], spheroids [10,18], or a 

mixture of aggregates and spheroids [15,19]. In Ref. [8], the first attempt was made to analyze the 

results of polatimetric measurements obtained for the distant comet C/2010 S1. It was found that the 

model of dust in the form of compact aggregates of an overall radius Rag ~ 1.3 μm composed of N = 

1000 spherical monomers with a radius a = 0.1 μm and a refractive index m = 1.65 + i 0.05 allows 

one to obtain a satisfactory agreement between the results of polarimetric observations and 

computations. 

The new polarimetric observations of distant comets remain sparse and cannot be used yet to 

derive individual models of dust for each comet. However, their systematic deviation from the 

results of previous polarimetric observations of comets at small heliocentric distances undoubtedly 

warrants an initial theoretical analysis. Hence the main objectives of this paper are as follows: (i) to 
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summarize recent polarimetric data observed for six distant comets; (ii) to present the results of 

theoretical modeling of light scattering characteristics performed for different particle morphologies 

and to compare them with the observations; and (iii) based on the results of this comparison, to 

discuss the possible composition of particles in the atmospheres of distant comets. The final section 

summarizes our findings.  

 

2. Results of polarimetric observations 

Table 1 summarizes the results of aperture polarimetric observations carried out for distant 

comets during the period from 2011 to 2016. These observations have been performed using the 6-

m telescope of the Special Astrophysical Observatory (Nizhnij Arkhyz, Russia) with the multi-

mode focal reducer SCORPIO-2 [20,21]. A detailed description of the procedure used to process 

polarimetric images is given in Refs. [9,22]. Table 1 provides the following information: the date of 

an observation (the mid-cycle time); the respective heliocentric, r, and geocentric, , distances; the 

phase angle ; the spectral filter and its effective wavelength eff; the total exposure time Texp; the 

degree of linear polarization P; and the name of the comet. It should be noted that because the 

tabulated values of polarization have been obtained from measurements with a circular projected 

diameter of the aperture ranging from 5000 up to 8000 km, they only represent average values of 

polarization for a cometary coma. This is explained by the fact that active comets have extended 

atmospheres of varying structure [8]. As a consequence, the measured values of polarization depend 

on the aperture used, and hence allow one to infer only “average” characteristics of cometary 

particles. 

In Fig. 1, we depict the observed values of the degree of linear polarization for short- and 

long-period close-to-the-Sun comets at phase angles α ≤ 25° and in the spectral interval 0.5–0.7 μm 

[23], as well as our observational data obtained for the distant comets C/2010 S1, C/2010 R1, 

C/2011 KP36, C/2012 J1, C/2013 V4, and C/2014 A4. It is obvious that in the range of phase 

angles considered, all the distant comets exhibit larger absolute values of negative polarization 

compared to those observed for comets at small heliocentric distances. 

 

3. Numerical modeling methodology 

Theoretical modeling of the phenomenon of light scattering in the atmosphere of a comet is 

usually based on the assumption of a low volume concentration of the cometary particles. This 

assumption enables one to consider the cometary atmosphere as an optically thin cloud and thereby 

ignore the contribution of multiple scattering. For a macroscopically isotropic and mirror-symmetric 
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particulate scattering medium, the far-field transformation of the Stokes parameters upon first-order 

scattering can be written in terms of the real-valued so-called normalized Stokes scattering matrix 

F(θ): 
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where θ  [0, 180] is the angle between the incidence and scattering directions (i.e., θ = 180 − 

, where  is the phase angle), and both sets of the Stokes parameters are defined with respect to 

the common scattering plane [24]. The element )(11 F  is called the phase function and satisfies the 

normalization condition 

.1dsin)(
2
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0

11  



F                                                                                                                       (2) 

If the incident light (in our case, sunlight) is unpolarized then the element )(11 F  characterizes the 

angular distribution of the scattered intensity, while the ratio − )(21 F / )(11 F  represents the 

corresponding degree of linear polarization.  

In our numerical simulations, we have modeled cometary dust particles as oblate spheroids 

and fractal aggregates composed of identical homogeneous spherical monomers. The shape of an 

oblate spheroid is fully defined by its aspect ratio E, i.e., the ratio of the longest to the shortest 

spheroid axes, while the geometry of an aggregate is described by the conventional statistical-

scaling raw [25]: 
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where rmon  is the monomer radius, 1 ≤ Df ≤ 3 is the fractal dimension, k0 is the fractal prefactor, N is 

the number of monomers in the aggregate, and Rg, called the radius of gyration, provides a measure 

of the overall aggregate radius Ra. Both Df and k0 define the overall morphology of a fractal 

aggregate. Compact aggregates have Df values approaching 3, whereas the fractal dimension of 

fluffy clusters can be much smaller. The overall radius of an aggregate can be defined 

as ga 35 RR  [26]. In order to generate quasi-random coordinates of the monomers in a fractal 

cluster, we use the diffusion-limited aggregation (DLA) simulation procedure developed by D. W. 

Mackowski (personal communication; see also Ref. [27]), in which the generation procedure starts 

with a pair of spheres in contact for pre-set k0 and Df values and adds a single monomer at a time.   
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Our extensive computations of light scattering have been based on two numerical 

techniques. Specifically, in the case of spheroids, we have used the FORTRAN-77 T-matrix 

implementation [28] of the Waterman’s extended boundary condition method [29] coupled with 

quasi-analytical averaging over the uniform orientation distribution [30]. For aggregates, we have 

used the superposition T-matrix method developed for multisphere groups in random orientation 

[31] and implemented in the form of a FORTRAN-90 computer program designed for parallel 

computer clusters [32]. 

  

4. Modeling results and discussion 

4.1. Spheroidal particles 

The first step in our analysis of the polarimetric observational data was to parameterize the 

particle shape by selecting the simple model of randomly oriented homogeneous oblate spheroids, 

which can adequately reproduce the scattering properties of a variety of nonspherical particles (see, 

e.g., Ref. [24] and references therein). Particle polydispersity was modeled in terms of the simple 

power law distribution [33]:  



 




                         otherwise,                              ,0

                         ,        ,constant
)( 21

3 rrrr
rn                                                               (4) 

in which the effective variance [33] was fixed at veff = 0.1.                      

As a result of extensive computations of the degree of linear polarization for such particles 

with different effective size parameters xeff = 2πreff/ (where reff is the effective radius [33]) and 

refractive indices in the range 1.25 ≤ m ≤ 1.65, we have concluded that the model of homogeneous 

oblate spheroids alone is not suitable for an adequate representation of the results of observations. 

Nevertheless, further analysis has shown that spheroids composed of water ice with m = 1.31, E = 

1.4, and xeff = 3.5 (or E = 1.5 and xeff = 4) can be part of more complex models of particles in 

cometary atmospheres. 

Fig. 2 depicts the computed phase-angle dependences of the degree of linear polarization for 

water-ice spheroids with E = 1.4, xeff = 3.5 and E = 1.5, xeff = 4. 

 

4.2. Fractal aggregates 

Needless to say, it is important to understand how much the specific aggregate structure can 

affect the resulting light-scattering characteristics. In some studies (see, e.g., Refs. [10,13,34]), it 

has been stated that the morphology of cometary grains has a weak influence on their optical 
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properties. However, the computations reported in Refs. [11,35] show that the effect of morphology 

on the scattering characteristics of fractals can be quite significant.  

Given the importance of this problem, we have performed numerical modeling of light-

scattering characteristics for three types of aggregates: (a) Df =1,8, k0= 1,2 (similar to those 

resulting from the so-called ballistic cluster–cluster aggregation, or BCCA); (b) Df =2,8, k0= 1,06; 

and (c) Df =3, k0= 1 (similar to those resulting from the ballistic particle–cluster aggregation, or 

BPCA). Fig. 3 illustrates fractal-like aggregates with these values of the fractal parameters Df and 

k0, assuming a fixed number of monomers N = 100. We believe that these three models of 

aggregates can be representative of the likely structure of particles in the comas of distant comets.  

The computations have been performed for the refractive index of monomers m = 1.65 + 

i0.05, the monomer size parameter xmon = 2πrmon/ = 1.15 (corresponding to the value of the 

monomer radius rmon = 0.1 μm at  = 0.55 μm or rmon = 0.12 μm at  = 0.642 μm), and the number 

of monomers N equal to 100 and 500. In Fig. 4, we depict the corresponding phase-angle 

dependences of the phase function F11 and the ratio –F21/F11. One can clearly see a significant 

dependence of both on the compactness of aggregates, wherein an increase in compactness results 

in the appearance and enhancement of interference features (oscillations) typical of large individual 

spherical particles [24]. Our modeling results (not shown here) demonstrate that the appearance of 

the oscillations depends also on the monomer size (a decrease in xmon necessitates an increase in the 

number of monomers N to cause oscillations) and does not depend on the refractive index. In order 

to smooth out the interference oscillations, it is necessary to perform ensemble averaging over 

aggregates with different overall sizes and/or different monomer sizes, but these procedure would 

require a substantial computational effort. It should be noted that the existence of interference 

waves in the phase-angle dependences of the elements of the Stokes scattering matrix for compact 

aggregates was previously discussed in Refs. [36,37].  

Extensive computations of light scattering by cometary dust particles of different size and 

chemical composition were performed in Ref. [8] by using the superposition T-matrix method 

[31,32]. In the upper row of Fig. 5, we demonstrate the phase-angle dependences of linear 

polarization computed in [8] using the single scattering approximation for a particulate medium 

composed of fractal aggregates with the monomer size parameter xmon = 1.15, the number of 

monomers N = 50 and 100, Df  = 3, and k0 = 1 (the left-hand panels), as well as N = 50, 100, 500, 

1000, Df  = 2.8, and k0 =1.06 (the right-hand panels). These results were obtained for the monomer 

refractive index m = 1.65 + i 0.05 typical of astronomical silicates in the visible spectral range [11]. 

It is seen that for N = 100 (Df  = 3, k0 =1) and N = 1000 (Df  = 2.8, k0 =1.06), there is a good 

agreement between the results of computations and the observational data for comet C/2010 S1. 

However, the strong oscillations of polarization at phase angles α > 50° in the case of N = 100 (the 
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bottom left-hand panel) preclude the straightforward attribution of this model to cometary dust. For 

this reason in Ref. [8], only the model of aggregates with Df  = 2.8 and k0 =1.06 (Fig. 2, type (b)) 

composed of N = 1000 silicate monomers was adopted as being plausible in the case of comet 

C/2010 S1. 

To discuss the behavior of linear polarization in the case of fluffy silicate aggregates of type 

(a) (Fig. 3), in Fig. 6 we depict the results of computations for clusters with Df  = 1.8 and k0 =1.2 

and the following monomer parameters: m = 1.65 + i 0.05, xmon = 1.15, and N = 100, 200, 500, 

1000. A weak branch of negative polarization is seen at phase angles α < 15° for N ≤ 500 which 

becomes much stronger for N = 1000. In this case, the modeled phase curve of polarization agrees 

with the results of observations for comet C/2010 S1. At α < 40° and α > 140°, one can see a very 

weak dependence of the degree of linear polarization on the number of monomers N. Also a strong 

maximum of positive polarization occurs at α = 80° which decreases with increasing N and shifts 

towards smaller phase angles.  

We have also considered aggregates with the composition consistent with that attributed to 

the dust in comet Halley (a mixture of 31.76% silicates, 2.56% iron, and 65.68% carbonaceous 

materials). This mixture was used in numerical modeling of polarization for dust in comets at small 

heliocentric distances (see, e.g., Refs. [10,34,38]). Specifically, the computations were based on the 

refractive index m = 1.88 + i0.47 (at  = 0.45 μm) and m = 1.98 + i0.48 (at  = 0.6 μm), as derived 

by using the Maxwell-Garnett mixing rule [39]. In our computations, we have adopted the value m 

= 1.98 + i0.48. The respective –F21/F11 results are depicted in Fig. 7. The upper row corresponds to 

the cases of xmon = 0.5, Df  = 1.8, k0 =1.2 (the left-hand panels) and xmon = 0.5, Df  = 2.8, k0 =1.06 

(the right-hand panels); the bottom row corresponds to the case of xmon = 1.15. It is seen that neither 

theoretical angular dependence provides an adequate fit to the results of observations.  

Interestingly, our numerical data contradict the results of Refs. [10,34,38] wherein a weak 

negative branch of polarization in the range of small phase angles was identified for BCCA and 

BPCA clusters composed of N = 256 monomers with m = 1.98 + i0.48 and rmon = 0.1 μm. 

Furthermore, applying the Maxwell-Garnett mixing rule to aggregates consisting of submicrometer 

monomers requires additional justification and can, in fact, be questionable. Indeed, in the case of 

heterogeneous scatterers, this effective-medium approximation is known to give numerically wrong 

results whenever the inclusion size parameter exceeds a few tenths [40,41]. A better approach 

would be to model the heterogeneity of aggregate particles explicitly and thereby avoid the use of a 

phenomenological effective-medium methodology.   

Also, we have considered the case of a cometary atmosphere composed of organic particles. 

The existence of such particles in bright comets has been discussed in a number of publications 

(see, e.g., Refs. [10,42,43]). Our computations are based on the refractive index m = 1.96 + i0.33 
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taken from Ref. [44], the monomer size parameter xmon = 1.15, two types of aggregate structure (Df  

= 1.8, k0 =1.2 and Df = 2.8, k0 =1.06), and different numbers of monomers. The results of 

computations presented in Fig. 8 reveal the absence of a negative branch of polarization at small 

phase angles and the (almost) complete absence of a dependence on N for N > 200 and Df  = 1.8 and 

k0 =1.2. Furthermore, at large phase angles in the case of Df  = 2.8 and k0 =1.06, one can see strong 

interference waves in the polarization curves which intensify with increasing N.   

 

4.3. Morphological mixtures of particles 

Finally, let us consider light scattering by a cometary atmosphere assuming that it consists of 

a mixture of different particle types. Note that similar scenarios have already been discussed 

previously (e.g., Refs. [15,18,19]). Let δn be the number fraction of the particles of the nth 

morphology, so that  
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where N is the total number of morphological types in the mixture. Then [22] 
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where scaC  and extC  are the ensemble-averaged scattering and extinction cross sections per particle, 

respectively, ω is the resulting single-scattering albedo, and nC ,sca  and nC ,ext  are the scattering and 

extinction cross sections, respectively, for each particle of the nth morphological type. Furthermore, 

for the whole ensemble of cometary particles we have [24]  
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Eqs. (5)–(10) correct the methodology used in Refs. [15,18] wherein a simple average of the F11 and 

– F21/F11 values was computed.    

We have analyzed several mixtures composed of ice spheroids + silicate aggregates and ice 

spheroids + silicate aggregates + organic aggregates. It should be noted that the possibility of the 

presence of ice grains in the comas of distant comets was discussed, for example, in Refs. [5,45,46]. 

In Figs. 9–12, examples of the results of our numerous simulations are given. Figs. 9–11 

correspond to the case of the mixture of ice spheroids and silicate aggregates with N = 100 and 

1000 monomers. Fig. 12 pertains to the case of the mixture of three components, viz., ice spheroids 

and silicate and organic aggregates with N = 100 and 500 monomers. Note that we have considered 

silicate aggregates with Df  = 1.8, k0 =1.2 and Df  = 2.8, k0 =1.06, as well as organic aggregates with 

Df  = 1.8 and k0 =1.2. In all these cases, the monomer size parameter xmon is equal to 1.15, while the 

spheroid component is specified by the parameters E = 1.4, xeff = 3.5 or E = 1.5, xeff = 4.  

It is seen that no unique solution has been obtained in the form of a model of cometary 

particles that satisfies all available results of observations obtained for different distant comets. 

However, finding such a solution is impossible in principle because different comets at different 

heliocentric distances are unlikely to have exactly the same particulate composition. It can be 

concluded nonetheless that for some comets the use of a mixture of different particle morphologies 

and/or compositions can substantially improve the agreement between the modeling results and 

observational data.  

Note that a mixture of compact silicate aggregates (Df  = 2.8, k0 =1.06) and ice spheroids 

results in a smoothing of polarization curves (see Fig. 11), but the interference waves still persist. 

Therefore, in this case ensemble averaging appears to be warranted. It should be emphasized that 

our results imply the presence of a very large amount of ice in the atmospheres of the distant comets 

considered. This outcome is caused by the fact that the ice spheroids considered have much smaller 

scattering cross sections than the aggregated particles, so that a very large number of ice particles is 

required to make their effect on the total scattering matrix noticeable.  

In Fig. 13, the theoretical phase-angle dependences of the phase function F11 are depicted for 

the values of model parameters that allow one to obtain the best agreement between the results of 

polarimetric observations and computations shown in Figs. 9–12. It is seen that all phase-function 

curves exhibit a strong diffraction peak at large phase angles (i.e., at small scattering angles) and a 

weak backscattering enhancement at α < 30°.    
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5. Conclusions  

The overall goal of this paper has been rather ambitious: to perform polarimetric 

observations of distant comets and use these data to infer the microphysical characteristics of the 

particles forming their atmospheres. All results of our observations carried out at phase angles α < 

15° reveal the ubiquitous negative polarization branch to be significantly more pronounced than that 

typically observed for the whole coma of comets at small heliocentric distances. To simulate these 

observations theoretically, we have considered, in particular, aggregate particles (both very compact 

and very porous) composed of a large number (up to N = 1000) of submicrometer spherical 

monomers. The possibility of carrying out such calculations within reasonable computer time has 

demonstrated once again the very high efficiency of the superposition T-matrix program described 

in Ref. [32]. As a result of our extensive numerical modeling, we have obtained a reasonable semi-

quantitative agreement with all observational polarimetric data for the following two particulate 

models: a mixture of water-ice oblate spheroids (E = 1.4–1.5, xeff = 3.5–4) with porous aggregates 

(Df = 1.8, k0 = 1.2) composed of silicate monomers (N = 100, 500, 1000; xmon = 1.15) or compact 

aggregates (Df = 2.8, k0 = 1.06) composed of silicate monomers (N = 1000, xmon = 1.15); and a 

mixture of the same water-ice oblate spheroids with porous silicate and organic aggregates (Df = 

1.8, k0 = 1.2, N = 100, 500).  It should be noted that one of the main differences between our model 

and the ones used for comets close to the Sun (see, e.g., Ref. [19]) is the inclusion in the model of a 

large number of grains consisting of water ice. Comparison of the computed curves given in Figs. 6 

and 8 with those presented in Figs. 9, 10 and 12 shows that the presence of ice particles (in this case 

in the form of oblate spheroids) results in a deepening of the negative branch of polarization, and  

thereby improves the agreement with the observational data for distant comets.  

We are fully aware of the obvious fact that the derived models of particles in the 

atmospheres of distant comets are preliminary and highly approximate. Indeed, we have used 

extremely scarce observational data pertaining to no more than two phase angles per comet and 

only one wavelength per phase angle. Therefore, extensive additional photopolarimetric 

observations carried out at multiple phase angles and multiple wavelengths per comet are required 

for better understanding of the nature and morphology of particles in the atmospheres of distant 

comets. 
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Table 1 

Log of polarimetric observations of distant comets 

UT Date r 

(AU) 

 

(AU) 

 

(deg) 

Filter λeff 

(μm) 

Texp 

(s) 

P  

(%) 

Object 

Nov. 25.71, 2011 7.01 6.52 7.3 V 0.551 540 –1.9 C/2010 S1 

Nov. 12.69, 2012 6.05 5.87 9.4 g-sdss 0.465 600 –2.01 C/2010 S1  

Nov. 15.83, 2012 3.17  2.45 14.2 V 0.551 640 –2.0 C/2012 J1  

Feb. 06.19, 2013 5.94 5.57 9.2 r-sdss 0.620 1260 –3.0 C/2010 R1  

Nov. 05.89, 2015 4.21 3.28 4.9 r-sdss 0.620 450 –1.9 C/2014 A4  

Nov. 06.15, 2015 5.19 4.61 9.4 R 0.642 450 –2.3 C/2013 V4  

Nov. 25.82 2016 5.05 4.47 9.7 r-sdss 0.620 900 –2.5 2011 KP36  
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Fig. 1. Degree of linear polarization for comets at small heliocentric distances [21] and distant 

comets (this work). 

 

 

 

Fig. 2. Phase-angle dependence of the degree of linear polarization. Observational data for distant 

comets are compared with the  results of computations for oblate spheroids.  

 

 

 

 

 

Fig. 3. Examples of simulated aggregate particles: (a) Df =1.8, k0= 1.2; (b) Df =2.8, k0= 1.06; (c) Df 

=3, k0= 1. In all three cases, N = 100.  
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Fig. 4. Modeled phase-angle dependences of the phase function F11 (the upper panels) and the ratio 

–F21/F11 (the bottom panels) for different aggregate morphologies. The monomer size parameter is 

xmon = 1.15, their refractive index is m = 1.65 + i0.05, and the number of monomers is N = 100 (the 

left-hand panels) and N = 500 (the right-hand panels). 

 

 

 

Fig. 5. Theoretical phase-angle dependences of the ratio –F21/F11 for different numbers of 

monomers in aggregates with Df  = 3, k0 =1 (the left-hand panels), and Df  = 2.8, k0 =1.06 (the right-

hand panels). The symbols show the results of observations according to Fig. 2. 
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Fig. 6. As in Fig. 5, but for Df  = 1.8 and k0 =1.2. 

 

 

Fig. 7. As in Fig. 5, but for the refractive index m = 1.98 + i0.48 and the monomer size parameter 

xmon = 0.5 (the upper panels) and xmon = 1.15 (the bottom panels). The left-hand panels correspond 

to Df  = 1.8 and k0 = 1.2, while the right-hand panels correspond to Df  = 2.8 and k0 = 1.06.    

 

 

 

 

 

 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

19 

 

 

Fig. 8. As in Fig. 5, but for the refractive index m = 1.96 + i0.33 and Df  = 1.8, k0 =1.2 (the left-hand 

panels) and Df  = 2.8, k0 =1.06 (the right-hand panes). 

 

 
 

Fig. 9. Theoretical phase-angle dependences of the ratio –F21/F11 for different mixtures of silicate 

aggregates with Df  = 1.8 and k0 =1.2 and ice spheroids with E = 1.4, xeff = 3.5, and N = 100 (the 

left-hand panels) and N = 1000 (the right-hand panels). The symbols show the results of 

observations according to Fig. 2.   
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Fig. 10. As in Fig. 9, but for ice spheroids with E = 1.5 and xeff = 4. 

 

 

 

Fig. 11. As in Fig. 9, but for the mixture of silicate aggregates with Df  = 2.8 and k0 =1.06 and ice 

spheroids with E = 1.4, xeff = 3.5 (the left-hand panels) and E = 1.5, xeff = 4 (the right-hand panels). 
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Fig. 12. As in Fig. 9, but for different mixtures of silicate and organic aggregates with Df  = 1.8 and 

k0 =1.2 and ice spheroids with E = 1.5, xeff = 4, N = 100 (the left-hand panels) and N = 500 (the 

right-hand panels). 

 

   

 

 

Fig. 13. Modeled phase-angle dependences of the phase function F11. 


